欧美色欧美亚洲另类七区,惠美惠精品网,五月婷婷一区,国产亚洲午夜

課程目錄:R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

          R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用培訓(xùn)

 

 

 

R語(yǔ)言機(jī)器學(xué)習(xí)學(xué)術(shù)應(yīng)用
基礎(chǔ)
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中級(jí)
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實(shí)做與寫作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實(shí)做與寫作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

高級(jí)
Machine Learning (ML):

(3 Hours) Tree models and SVM (Support Vector Machine)

(6 Hours) Automatic ML for forecasting time series; 案例實(shí)做與寫作范例,涵蓋自動(dòng)化演算6個(gè)機(jī)器學(xué)習(xí)方法:

(1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

(2) GLM

(3) XGBoost (XGBoost GBM)

(4) GBM (gradient boost machine)

(5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

(6) StackedEnsemble.

(6 Hours) Econometric machine learning- Causality by ML prediction; 案例實(shí)做與寫作范例

(3 Hours) Financial machine learning- Portfolio committees introduced; 案例實(shí)做與寫作范例

R Lab: libraries of h2o, kera, tensorflow.

Research issues: Granger causality, volatility forecasting, portfolio selection,

economic fundamentals of exchange rates

主站蜘蛛池模板: 六盘水市| 泰州市| 遵化市| 澜沧| 鹤壁市| 阳泉市| 高台县| 东宁县| 蓝山县| 纳雍县| 乌审旗| 昭通市| 四会市| 博兴县| 临清市| 韩城市| 大冶市| 拉萨市| 永德县| 方城县| 长宁区| 股票| 兰溪市| 罗甸县| 乐东| 沧州市| 乌鲁木齐市| 定襄县| 石城县| 土默特右旗| 三门县| 洛扎县| 陆丰市| 武冈市| 怀来县| 枣阳市| 大田县| 旌德县| 泰宁县| 芦山县| 东光县|